Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
iScience ; 27(4): 109464, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558940

RESUMO

Non-viral gene delivery systems have received sustained attention as a promising alternative to viral vectors for disease treatment and prevention in recent years. Numerous methods have been developed to enhance gene uptake and delivery in the cytoplasm; however, due to technical difficulties and delivery efficiency, these systems still face challenges in a range of biological applications, especially in vivo. To alleviate this challenge, we devised a novel system for gene delivery based on a recombinant protein eTAT-ZF9-NLS, which consisted of a multifunctional chimeric peptide and a zinc-finger protein with sequence-specific DNA-binding activity. High transfection efficiency was observed in several mammalian cells after intracellular delivery of plasmid containing ZF9-binding sites mediated by eTAT-ZF9-NLS. Our new approach provides a novel transfection strategy and the transfection efficiency was confirmed both in vitro and in vivo, making it a preferential transfection reagent for possible gene therapy.

2.
Commun Chem ; 7(1): 87, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637620

RESUMO

Asparaginyl ligases have been extensively utilized as valuable tools for site-specific bioconjugation or surface-modification. However, the application is hindered by the laborious and poorly reproducible preparation processes, unstable activity and ambiguous substrate requirements. To address these limitations, this study employed a structure-based rational approach to obtain a high-yield and high-activity protein ligase called OaAEP1-C247A-aa55-351. It was observed that OaAEP1-C247A-aa55-351 exhibits appreciable catalytic activities across a wide pH range, and the addition of the Fe3+ metal ion effectively enhances the catalytic power. Importantly, this study provides insight into the recognition and nucleophile peptide profiles of OaAEP1-C247A-aa55-351. The ligase demonstrates a higher recognition ability for the "Asn-Ala-Leu" motif and an N-terminus "Arg-Leu" as nucleophiles, which significantly increases the reaction yield. Consequently, the catalytic activity of OaAEP1-C247A-aa55-351 with highly efficient recognition and nucleophile motif, "Asn-Ala-Leu" and "Arg-Leu" under the buffer containing Fe3+ is 70-fold and 2-fold higher than previously reported OaAEP1-C247A and the most efficient butelase-1, respectively. Thus, the designed OaAEP1-C247A-aa55-351, with its highly efficient recognition and alternative nucleophile options, holds promising potential for applications in protein engineering, chemo-enzymatic modification, and the development of drugs.

3.
Cancer Immunol Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631019

RESUMO

The intrinsic pharmacokinetic limitations of traditional peptide-based cancer vaccines hamper effective cross-presentation and codelivery of antigens and adjuvants, which are crucial for inducing robust antitumor CD8+ T-cell responses. Here, we report the development of a versatile strategy that simultaneously addresses the different pharmacokinetic challenges of soluble subunit vaccines composed of antigens and CpG to modulate vaccine efficacy via translating an engineered chimeric peptide, eTAT, as an intramolecular adjuvant. Linking antigens to eTAT enhanced cytosolic delivery of the antigens. This, in turn, led to improved activation and lymph node-trafficking of antigen-presenting cells and antigen cross-presentation, thus promoting antigen-specific T-cell immune responses. Simple mixing of eTAT-linked antigens and CpG significantly enhanced codelivery of antigens and CpG to the antigen-presenting cells, and this substantially augmented the adjuvant effect of CpG, maximized vaccine immunogenicity and elicited robust and durable CD8+ T-cell responses. Vaccination with this formulation altered the tumor microenvironment and exhibited potent antitumor effects, with generally further enhanced therapeutic efficacy when used in combination with anti-PD1. Altogether, the engineered chimeric peptide-based orchestrated codelivery of antigen and adjuvant may serve as a promising but simple strategy to improve the efficacy of peptide-based cancer vaccines.

5.
Theor Appl Genet ; 137(2): 36, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291310

RESUMO

KEY MESSAGE: A total of 90,000 capture probes derived from wheat and Thinopyrum elongatum were integrated into one chip, which served as an economical genotype for explorating Thinopyrumspecies and their derivatives. Thinopyrum species play a crucial role as a source of new genetic variations for enhancing wheat traits, including resistance to both abiotic and biotic factors. Accurate identification of exogenous chromosome(s) or chromosome segments or genes is essential following the introduction of alien genetic material into wheat, but this task remains challenging. This study aimed to develop a high-resolution wheat-Thinopyrum elongatum array, named GenoBaits®WheatplusEE, to trace alien genetic information by genotyping using a target sequencing system. This GenoBaits®WheatplusEE array included 90,000 capture probes derived from two species and integrated into one chip, with 10,000 and 80,000 originating from wheat and Th. elongatum, respectively. The capture probes were strategically positioned in genes and evenly distributed across the genome, facilitating the development of a roadmap for identifying each alien gene. The array was applied to the high-throughput identification of the alien chromosomes or segments in Thinopyrum and distantly related species and their derivatives. Our results demonstrated that the GenoBaits®WheatplusEE array could be used for direct identification of the breakpoint of alien segments, determine copy number of alien chromosomes, and reveal variations in wheat chromosomes by a single round of target sequencing of the sample. Additionally, we could efficiently and cost-effectively genotype, supporting the exploration of subgenome composition, phylogenetic relationships, and polymorphisms in essential genes (e.g., Fhb7 gene) among Thinopyrum species and their derivatives. We hope that GenoBaits®WheatplusEE will become a widely adopted tool for exporting wild germplasm for wheat improvement in the future.


Assuntos
Poaceae , Triticum , Triticum/genética , Filogenia , Poaceae/genética , Fenótipo , Polimorfismo Genético
6.
Plant Dis ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127630

RESUMO

Huanglongbing (HLB) is a citrus infectious disease caused by Candidatus Liberibacters spp. Recently, it has begun to spread rapidly worldwide, causing significant losses to the citrus industry. Early diagnosis of HLB relies on quantitative real-time PCR assays. However, the PCR inhibitors found in the nucleic acid extracted from plant materials pose challenges for PCR assays because they may result in false-negative results. Internal standard (IS) can be introduced to establish a single-tube duplex PCR (STD-PCR) for monitoring the influence of the PCR-inhibitor, but it also brings the risk of false-negative results because the amplification of IS may compete with the target. To solve this problem, we proposed a mutation-enhanced single-tube duplex PCR (mSTD-PCR) containing IS with mutant-type primers. By introducing the 3'-terminal mutation in the primer of IS to weaken its amplification reaction and its inhibition of Candidatus Liberibacter asiaticus (CLas) detection, the sensitivity and quantitative accuracy of CLas detection will not be affected by IS. In evaluating the sensitivity of CLas detection using simulation samples, the mSTD-PCR showed consistent sensitivity at 25 copies/test compared with the single-plex CLas assay. The detection result of 30 leaves and 30 root samples showed that mSTD-PCR could recognize false-negative results caused by the PCR inhibitors and reduce workload by 48% compared with the single-plex CLas assay. Generally, the proposed mSTD-PCR provides a reliable, efficient, inhibitor-monitorable, and quantitative screening method for accurately controlling HLB and a universal method for establishing PCR assay for various pathogens.

8.
J Infect Dis ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738651

RESUMO

BACKGROUND: The value of the widely applied maternal cytomegalovirus (CMV) serological testing approach in predicting intrauterine transmission in highly seroprevalent regions remains unknown. METHODS: A nested case‒control study was conducted based on a maternal-child cohort study. Newborns with congenital CMV (cCMV) infection were included, and each of them was matched to 3 newborns without cCMV infection. Retrospective samples were tested for immunoglobulin G (IgG) avidity and immunoglobulin M (IgM) antibodies in maternal serum and CMV DNA in maternal blood and urine to analyse their associations with cCMV infection. RESULTS: Forty-eight newborns with cCMV infection and 144 matched newborns without infection were included in the study. Maternal IgM antibodies and IgG avidity during pregnancy were not statistically associated with intrauterine transmission. The presence of CMV DNAemia indicated a higher risk of cCMV infection, with the OR values as 5.7, 6.5 and 13.0 in early, middle and late pregnancy, respectively. However, the difference in CMV shedding rates in transmitters and nontransmitters was not significant in urine. CONCLUSION: The value of current maternal CMV serological testing in regions with high seropositivity rates is very limited and should be reconsidered. The detection of DNAemia would be helpful in assessing the risk of intrauterine transmission.

9.
N Engl J Med ; 389(9): 808-819, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646678

RESUMO

BACKGROUND: Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS: We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS: P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS: Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).


Assuntos
Anticorpos Antivirais , Detecção Precoce de Câncer , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Virais , Humanos , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Herpesvirus Humano 4/imunologia , Imunoglobulina A , Programas de Rastreamento , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Estudos Prospectivos , Estudos Retrospectivos , Biomarcadores/análise , Proteínas Virais/imunologia , Epitopos/imunologia
10.
Theor Appl Genet ; 136(9): 193, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606787

RESUMO

KEY MESSAGE: Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Íntrons , Alelos , Grão Comestível/genética , Nucleotídeos
12.
J Cancer ; 14(4): 532-543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057285

RESUMO

Background: Esophagus cancer is a malignant tumor with a high incidence rate, and radiation is an important modality for esophageal cancer therapy. However, therapeutic failure in the treatment of ESCC is often attributed to an inherent radio-resistance of the tumor cells. This study discusses effect and mechanism of carbon ion exerts tumor-inhibiting proliferation via down-regulation of LIF in esophageal squamous cell carcinoma. Methods: Colony formation, CCK8 and EdU assays were used to detect cell survival and proliferation after 0 and 2Gy carbon ion irradiation of ECA109 cells. Proteomics changes were probed in response to carbon ion irradiation using quantitative proteomics approach incorporating TMT isotope tags. Then, candidate genes were identified via bioinformatics analysis methods and microarray results were verified by real-time qPCR. Paired ESCC tumor tissues and adjacent non-tumor samples from 17 patients were collected and used for detecting expression by immunohistochemistry. Furthermore, small interfering RNA (siRNA) was transfected into ECA109 and KYSE150 cells and cell proliferation was analyzed by EdU assay. Flow cytometry and Western blot were performed to measure the and apoptosis and JAK-STAT3 protein expression level of ECA109 and KYSE150 cells combined drugs after siLIF transfection. Results: When compared with the control (0Gy), Inhibition of ECA109 cell proliferation and clonogenic survival by 2 Gy carbon ions, radiation group screened 360 differentially expressed proteins, 156 of which were up-regulated and 144 were down-regulated. Downregulation of LIF expression by siRNA enhances apoptotic in the ECA109 and KYSE150 cells, significantly inhibited esophageal squamous cell carcinoma cells proliferation. In ESCC cells, the JAK/STAT3 signaling pathway is inhibited in a LIF-dependent manner, resulting in the expression of STAT3 downstream target genes. Carbon ions combined with siLIF inhibited cell proliferation more significantly. The inhibitory cell proliferation effect was more pronounced by the combined intervention of carbon ion irradiation with siLIF. LIF expression was 18.51±9.84 and 5.82±4.50 in 17 paired ESCC tissues and adjacent non-cancerous tissues, respectively. LIF protein expression was lower in ESCC than in the adjacent normal tissue. Conclusion: The findings of this study reveal that Carbon ion knockdown was shown to downregulate LIF in ESCC cells. LIF is involved in ESCC proliferation and inhibited the ESCC cell proliferation by activating the STAT3 signaling pathways.

13.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047699

RESUMO

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Poaceae/genética , Resistência à Doença/genética , Hibridização Genética , Doenças das Plantas/genética
14.
Microorganisms ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36985163

RESUMO

Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.

15.
Planta ; 257(5): 84, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943494

RESUMO

MAIN CONCLUSION: 44 wheat LOX genes were identified by silico genome-wide search method. TaLOX5, 7, 10, 24, 29, 33 were specifically expressed post aphid infestation, indicating their participation in wheat-aphid interaction. In plants, LOX genes play important roles in various biological progresses including seed germination, tuber development, plant vegetative growth and most crucially in plant signal transduction, stress response and plant defense against plant diseases and insects. Although LOX genes have been characterized in many species, the importance of the LOX family in wheat has still not been well understood, hampering further improvement of wheat under stress conditions. Here, we identified 44 LOX genes (TaLOXs) in the whole wheat genome and classified into three subfamilies (9-LOXs, Type I 13-LOXs and Type II 13-LOXs) according to phylogenetic relationships. The TaLOXs belonging to the same subgroup shared similar gene structures and motif organizations. Synteny analysis demonstrated that segmental duplication events mainly contributed to the expansion of the LOX gene family in wheat. The results of protein-protein interaction network (PPI) and miRNA-TaLOXs predictions revealed that three TaLOXs (TaLOX20, 22 and 37) interacted mostly with proteins related to methyl jasmonate (MeJA) signaling pathway. The expression patterns of TaLOXs in different tissues (root, stem, leaf, spike and grain) under diverse abiotic stresses (heat, cold, drought, drought and heat combined treatment, and salt) as well as under diverse biotic stresses (powdery mildew pathogen, Fusarium graminearum and stripe rust pathogen) were systematically analyzed using RNA-seq data. We obtained aphid-responsive candidate genes by RNA-seq data of wheat after the English grain aphid infestation. Aphid-responsive candidate genes, including TaLOX5, 7, 10, 24, 29 and 33, were up-regulated in the wheat aphid-resistant genotype (Lunxuan144), while they were little expressed in the susceptible genotype (Jimai22) during late response (48 h and 72 h) to the English grain aphid infestation. Meanwhile, qRT-PCR analysis was used to validate these aphid-responsive candidate genes. The genetic divergence and diversity of all the TaLOXs in bread wheat and its relative species were investigated by available resequencing data. Finally, the 3D structure of the TaLOX proteins was predicted based on the homology modeling method. This study not only systematically investigated the characteristics and evolutionary relationships of TaLOXs, but also provided potential candidate genes in response to the English grain aphid infestation and laid the foundation to further study the regulatory roles in the English grain aphid infestation of LOX family in wheat and beyond.


Assuntos
Afídeos , Animais , Afídeos/genética , Lipoxigenase/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
16.
Front Surg ; 9: 917061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338651

RESUMO

Background: Recent evidence suggests that enhancer RNAs (eRNAs) play key roles in cancers. Identification of immune-related eRNAs (ireRNAs) in melanoma can provide novel insights into the mechanisms underlying its genesis and progression, along with potential therapeutic targets. Aim: To establish an ireRNA-related prognostic signature for melanoma and identify potential drug candidates. Methods: The ireRNAs associated with the overall survival (OS-ireRNAs) of melanoma patients were screened using data from The Cancer Genome Atlas (TCGA) via WGCNA and univariate Cox analysis. A prognostic signature based on these OS-ireRNAs was then constructed by performing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune landscape associated with the prognostic model was evaluated by the ESTIMATE algorithm and CIBERSORT method. Finally, the potential drug candidates for melanoma were screened through the cMap database. Results: A total of 24 OS-ireRNAs were obtained, of which 7 ireRNAs were used to construct a prognostic signature. The ireRNAs-related signature performed well in predicting the overall survival (OS) of melanoma patients. The risk score of the established signature was further verified as an independent risk factor, and was associated with the unique tumor microenvironment in melanoma. We also identified several potential anti-cancer drugs for melanoma, of which corticosterone ranked first. Conclusions: The ireRNA-related signature is an effective prognostic predictor and provides reliable information to better understand the mechanism of ireRNAs in the progression of melanoma.

17.
Front Plant Sci ; 13: 1012939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407596

RESUMO

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) potentially harbours useful genes that might contribute to the improvement of wheat. We describe M862 as a novel wheat-L. mollis alien disomic substitution line from a cross between wheat cv. 7182 and octoploid Tritileymus M47. Cytological observations indicate that M862 has a chromosome constitution of 2n = 42 = 21II. Two 4D chromosomes of wheat substituted by two L. mollis Ns chromosomes were observed, using the GISH and ND-FISH analyses. Molecular marker, 55K SNP array and wheat-P. huashanica liquid array (GenoBaits®WheatplusPh) analyses further indicate that the alien chromosomes are L. mollis 4Ns. Therefore, it was deduced that M862 was a wheat-L. mollis 4Ns(4D) alien disomic substitution line. There were also changes in chromosomes 1A, 1D, 2B and 5A detected by ND-FISH analysis. Transcriptome sequencing showed that the structural variation of 1D, 1A and 5A may have smaller impact on gene expression than that for 2B. In addition, a total of 16 markers derived from Lm#4Ns were developed from transcriptome sequences, and these proved to be highly effective for tracking the introduced chromosome. M862 showed reduced height, larger grains (weight and width), and was highly resistance to CYR32 and CYR34 stripe rust races at the seedling stage and mixed stripe rust races (CYR32, CYR33 and CYR34) at the adult stage. It was also resistance to Fusarium head blight (FHB). This alien disomic substitution line M862 may be exploited as an important genetic material in the domestication of stipe rust and FHB resistance wheat varieties.

18.
iScience ; 25(10): 105099, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185383

RESUMO

Non-replicating rotavirus vaccines are an alternative strategy to improve the efficacy and safety of rotavirus vaccines. The spike protein VP4, which could be enzymatically cleaved into VP8∗ and VP5∗, is an ideal target for the development of recombinant rotavirus vaccine. In our previous studies, we demonstrated that the truncated VP4 (aa26-476, VP4∗) could be a more viable vaccine candidate compared to VP8∗ and VP5∗. Here, to develop a human rotavirus vaccine, the VP4∗ proteins of P[4], P[6], and P[8] genotype rotaviruses were expressed. All VP4∗ proteins can stimulate high levels of neutralizing antibodies in both guinea pigs and rabbits when formulated in aluminum adjuvant. Furthermore, bivalent VP4∗-based vaccine (P[8] + P[6]-VP4∗) can stimulate high levels of neutralizing antibodies against various genotypes of rotavirus with no significant difference as compared to the trivalent vaccines. Therefore, bivalent VP4∗ has the potential to be a viable rotavirus vaccine candidate for further development.

19.
Antiviral Res ; 207: 105407, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152816

RESUMO

Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.


Assuntos
Rotavirus , Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , Epitopos , Humanos , Imunossupressores , Camundongos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus
20.
Plant Sci ; 323: 111392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868348

RESUMO

Improving yield potential is a major goal of wheat breeding that depends on identifying key genetic loci. In this study, two residual heterozygous line RHL351- and RHL78-derived populations were employed for genetic linkage map construction and QTL detection. Two genetic populations indicated a robust grain-size QTL between Marker6 and Marker10. It covered a 95.54-99.38 Mb physical interval and was named Qpleio.nwafu.3D, containing the candidate gene Tasg (TraesCS3D02G137200). Intriguingly, RNA-seq analysis and sequencing revealed two different allelic variants in Tasg, named Tasg-D1 (G>A) and Tasg-D2 (C>G), respectively. Although the relationship between Tasg-D1 and grain size had been demonstrated previously, here we provided the first genetic evidence that C/G allelic variation in Tasg-D2 was associated with grain shape and size through a newly developed dCAPS marker. In addition, transcriptome comparison indicated that Tasg-D1/2 might primarily contribute to significant expression differences in brassinolide (BR) metabolism-related genes rather than those related to BR responses in developing grains and spikes. Our study provided new evidence and a breeder-friendly dCAPS marker for improving grain size through the selection of Tasg, as well as a basis to understand Tasg function in the future.


Assuntos
Locos de Características Quantitativas , Triticum , Brassinosteroides , Mapeamento Cromossômico , Grão Comestível/genética , Ligação Genética , Pleiotropia Genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Esteroides Heterocíclicos , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...